Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Infect Dis ; 23(1): 330, 2023 May 16.
Article in English | MEDLINE | ID: covidwho-2326120

ABSTRACT

BACKGROUND: While others have reported severe acute respiratory syndrome-related coronavirus 2(SARS-CoV-2) seroprevalence studies in health care workers (HCWs), we leverage the use of a highly sensitive coronavirus antigen microarray to identify a group of seropositive health care workers who were missed by daily symptom screening that was instituted prior to any epidemiologically significant local outbreak. Given that most health care facilities rely on daily symptom screening as the primary method to identify SARS-CoV-2 among health care workers, here, we aim to determine how demographic, occupational, and clinical variables influence SARS-CoV-2 seropositivity among health care workers. METHODS: We designed a cross-sectional survey of HCWs for SARS-CoV-2 seropositivity conducted from May 15th to June 30th 2020 at a 418-bed academic hospital in Orange County, California. From an eligible population of 5,349 HCWs, study participants were recruited in two ways: an open cohort, and a targeted cohort. The open cohort was open to anyone, whereas the targeted cohort that recruited HCWs previously screened for COVID-19 or work in high-risk units. A total of 1,557 HCWs completed the survey and provided specimens, including 1,044 in the open cohort and 513 in the targeted cohort. Demographic, occupational, and clinical variables were surveyed electronically. SARS-CoV-2 seropositivity was assessed using a coronavirus antigen microarray (CoVAM), which measures antibodies against eleven viral antigens to identify prior infection with 98% specificity and 93% sensitivity. RESULTS: Among tested HCWs (n = 1,557), SARS-CoV-2 seropositivity was 10.8%, and risk factors included male gender (OR 1.48, 95% CI 1.05-2.06), exposure to COVID-19 outside of work (2.29, 1.14-4.29), working in food or environmental services (4.85, 1.51-14.85), and working in COVID-19 units (ICU: 2.28, 1.29-3.96; ward: 1.59, 1.01-2.48). Amongst 1,103 HCWs not previously screened, seropositivity was 8.0%, and additional risk factors included younger age (1.57, 1.00-2.45) and working in administration (2.69, 1.10-7.10). CONCLUSION: SARS-CoV-2 seropositivity is significantly higher than reported case counts even among HCWs who are meticulously screened. Seropositive HCWs missed by screening were more likely to be younger, work outside direct patient care, or have exposure outside of work.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , COVID-19/epidemiology , Cross-Sectional Studies , Pandemics , Seroepidemiologic Studies , Health Personnel , Antibodies, Viral
2.
Curr Opin Infect Dis ; 35(4): 295-301, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2032205

ABSTRACT

PURPOSE OF REVIEW: To describe the state-of-the-art of telemedicine in hematology through the description of most relevant studies published in the pre-COVID19 and during the COVID19 era. RECENT FINDINGS: Telemedicine has recently gained momentum in hematology due to the COVID19 pandemic. Due to a necessary improvement of domiciliary follow-up of patients during the pandemic and an increase in technologies able to offer telemedicine, the number of studies has increased in the last 2 years. Telemedicine showed the potential to improve the monitoring of both benign and malignant hematological diseases. Patients affected by thalassemias, hemophilias and/or myeloproliferative diseases were monitored successfully with telemedicine platform. For higher-risk patients such as high-dose chemotherapy or stem cell transplantation, better platforms are needed (e.g. use of wearable devices systems). Also, telemedicine showed to be useful for the follow-up of hematological patients with COVID19. SUMMARY: Despite the clear potential advantages of telemedicine for the follow-up of hematological patients, more evidence is required before adopting this approach in larger cohorts of patients. Larger- and higher-quality studies are highly needed in this setting.


Subject(s)
COVID-19 , Telemedicine , COVID-19/epidemiology , Europe/epidemiology , Humans , Pandemics
3.
Front Immunol ; 13: 817345, 2022.
Article in English | MEDLINE | ID: covidwho-1875411

ABSTRACT

Recent studies provide conflicting evidence on the persistence of SARS-CoV-2 immunity induced by mRNA vaccines. Here, we aim to quantify the persistence of humoral immunity following vaccination using a coronavirus antigen microarray that includes 10 SARS-CoV-2 antigens. In a prospective longitudinal cohort of 240 healthcare workers, composite SARS-CoV-2 IgG antibody levels did not wane significantly over a 6-month study period. In the subset of the study population previously exposed to SARS-CoV-2 based on seropositivity for nucleocapsid antibodies, higher composite anti-spike IgG levels were measured before the vaccine but no significant difference from unexposed individuals was observed at 6 months. Age, vaccine type, or worker role did not significantly impact composite IgG levels, although non-significant trends towards lower antibody levels in older participants and higher antibody levels with Moderna vaccine were observed at 6 months. A small subset of our cohort were classified as having waning antibody titers at 6 months, and these individuals were less likely to work in patient care roles and more likely to have prior exposure to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , COVID-19/prevention & control , Health Personnel , Humans , Immunoglobulin G , Infant , Prospective Studies
4.
Antimicrob Resist Infect Control ; 10(1): 163, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528697

ABSTRACT

BACKGROUND: Early evaluations of healthcare professional (HCP) COVID-19 risk occurred during insufficient personal protective equipment and disproportionate testing, contributing to perceptions of high patient-care related HCP risk. We evaluated HCP COVID-19 seropositivity after accounting for community factors and coworker outbreaks. METHODS: Prior to universal masking, we conducted a single-center retrospective cohort plus cross-sectional study. All HCP (1) seen by Occupational Health for COVID-like symptoms (regardless of test result) or assigned to (2) dedicated COVID-19 units, (3) units with a COVID-19 HCP outbreak, or (4) control units from 01/01/2020 to 04/15/2020 were offered serologic testing by an FDA-authorized assay plus a research assay against 67 respiratory viruses, including 11 SARS-CoV-2 antigens. Multivariable models assessed the association of demographics, job role, comorbidities, care of a COVID-19 patient, and geocoded socioeconomic status with positive serology. RESULTS: Of 654 participants, 87 (13.3%) were seropositive; among these 60.8% (N = 52) had never cared for a COVID-19 patient. Being male (OR 1.79, CI 1.05-3.04, p = 0.03), working in a unit with a HCP-outbreak unit (OR 2.21, CI 1.28-3.81, p < 0.01), living in a community with low owner-occupied housing (OR = 1.63, CI = 1.00-2.64, p = 0.05), and ethnically Latino (OR 2.10, CI 1.12-3.96, p = 0.02) were positively-associated with COVID-19 seropositivity, while working in dedicated COVID-19 units was negatively-associated (OR 0.53, CI = 0.30-0.94, p = 0.03). The research assay identified 25 additional seropositive individuals (78 [12%] vs. 53 [8%], p < 0.01). CONCLUSIONS: Prior to universal masking, HCP COVID-19 risk was dominated by workplace and community exposures while working in a dedicated COVID-19 unit was protective, suggesting that infection prevention protocols prevent patient-to-HCP transmission. Prior to universal masking, HCP COVID-19 risk was dominated by workplace and community exposures while working in a dedicated COVID-19 unit was protective, suggesting that infection prevention protocols prevent patient-to-HCP transmission.


Subject(s)
COVID-19/prevention & control , Health Personnel , Infection Control , Academic Medical Centers , Adult , California/epidemiology , Community-Acquired Infections , Cross-Sectional Studies , Disease Outbreaks , Female , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Male , Middle Aged , Multivariate Analysis , Regression Analysis , Retrospective Studies , Risk Factors
5.
J Immunol ; 206(11): 2566-2582, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1207829

ABSTRACT

Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4+ and CD8+ T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4+ and CD8+ T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4+ and CD8+ T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pan-coronavirus vaccine to protect against past, current, and future outbreaks.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte , Genome, Viral/immunology , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Adult , Aged , Aged, 80 and over , Animals , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
6.
bioRxiv ; 2020 Sep 28.
Article in English | MEDLINE | ID: covidwho-835240

ABSTRACT

Over the last two decades, there have been three deadly human outbreaks of Coronaviruses (CoVs) caused by emerging zoonotic CoVs: SARS-CoV, MERS-CoV, and the latest highly transmissible and deadly SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats, the natural hosts, and transmitted to humans via various intermediate animal reservoirs. Because there is currently no universal pan-Coronavirus vaccine available, two worst-case scenarios remain highly possible: (1) SARS-CoV-2 mutates and transforms into a seasonal "flu-like" global pandemic; and/or (2) Other global COVID-like pandemics will emerge in the coming years, caused by yet another spillover of an unknown zoonotic bat-derived SARS-like Coronavirus (SL-CoV) into an unvaccinated human population. Determining the antigen and epitope landscapes that are conserved among human and animal Coronaviruses as well as the repertoire, phenotype and function of B cells and CD4 + and CD8 + T cells that correlate with resistance seen in asymptomatic COVID-19 patients should inform in the development of pan-Coronavirus vaccines 1 . In the present study, using several immuno-informatics and sequence alignment approaches, we identified several human B-cell, CD4 + and CD8 + T cell epitopes that are highly conserved in: ( i ) greater than 81,000 SARS-CoV-2 human strains identified to date in 190 countries on six continents; ( ii ) six circulating CoVs that caused previous human outbreaks of the "Common Cold"; ( iii ) five SL-CoVs isolated from bats; ( iv ) five SL-CoV isolated from pangolins; ( v ) three SL-CoVs isolated from Civet Cats; and ( vi ) four MERS strains isolated from camels. Furthermore, we identified cross-reactive asymptomatic epitopes that: ( i ) recalled B cell, CD4 + and CD8 + T cell responses from both asymptomatic COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2; and ( ii ) induced strong B cell and T cell responses in "humanized" Human Leukocyte Antigen (HLA)-DR/HLA-A*02:01 double transgenic mice. The findings herein pave the way to develop a pre-emptive multi-epitope pan-Coronavirus vaccine to protect against past, current, and potential future outbreaks.

7.
Nat Med ; 26(8): 1218-1223, 2020 08.
Article in English | MEDLINE | ID: covidwho-616643

ABSTRACT

As of 10 April 2020, New York State had 180,458 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 9,385 reported deaths. Patients with cancer comprised 8.4% of deceased individuals1. Population-based studies from China and Italy suggested a higher coronavirus disease 2019 (COVID-19) death rate in patients with cancer2,3, although there is a knowledge gap as to which aspects of cancer and its treatment confer risk of severe COVID-194. This information is critical to balance the competing safety considerations of reducing SARS-CoV-2 exposure and cancer treatment continuation. From 10 March to 7 April 2020, 423 cases of symptomatic COVID-19 were diagnosed at Memorial Sloan Kettering Cancer Center (from a total of 2,035 patients with cancer tested). Of these, 40% were hospitalized for COVID-19, 20% developed severe respiratory illness (including 9% who required mechanical ventilation) and 12% died within 30 d. Age older than 65 years and treatment with immune checkpoint inhibitors (ICIs) were predictors for hospitalization and severe disease, whereas receipt of chemotherapy and major surgery were not. Overall, COVID-19 in patients with cancer is marked by substantial rates of hospitalization and severe outcomes. The association observed between ICI and COVID-19 outcomes in our study will need further interrogation in tumor-specific cohorts.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/mortality , Pandemics , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Neoplasms/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Severity of Illness Index , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL